Aromatic residues within the substrate-binding cleft of Bacillus circulans chitinase A1 are essential for hydrolysis of crystalline chitin.
نویسندگان
چکیده
Bacillus circulans chitinase A1 (ChiA1) has a deep substrate-binding cleft on top of its (beta/alpha)8-barrel catalytic domain and an interaction between the aromatic residues in this cleft and bound oligosaccharide has been suggested. To study the roles of these aromatic residues, especially in crystalline-chitin hydrolysis, site-directed mutagenesis of these residues was carried out. Y56A and W53A mutations at subsites -5 and -3, respectively, selectively decreased the hydrolysing activity against highly crystalline beta-chitin. W164A and W285A mutations at subsites +1 and +2, respectively, decreased the hydrolysing activity against crystalline beta-chitin and colloidal chitin, but enhanced the activities against soluble substrates. These mutations increased the K(m)-value when reduced (GlcNAc)5 (where GlcNAc is N -acetylglucosamine) was used as the substrate, but decreased substrate inhibition observed with wild-type ChiA1 at higher concentrations of this substrate. In contrast with the selective effect of the other mutations, mutations of W433 and Y279 at subsite -1 decreased the hydrolysing activity drastically against all substrates and reduced the kcat-value, measured with 4-methylumbelliferyl chitotrioside to 0.022% and 0.59% respectively. From these observations, it was concluded that residues Y56 and W53 are only essential for crystalline-chitin hydrolysis. W164 and W285 are very important for crystalline-chitin hydrolysis and also participate in hydrolysis of other substrates. W433 and Y279 are both essential for catalytic reaction as predicted from the structure.
منابع مشابه
Expression and characterization of the chitin-binding domain of chitinase A1 from Bacillus circulans WL-12.
Chitinase A1 from Bacillus circulans WL-12 comprises an N-terminal catalytic domain, two fibronectin type III-like domains, and a C-terminal chitin-binding domain (ChBD). In order to study the biochemical properties and structure of the ChBD, ChBD(ChiA1) was produced in Escherichia coli using a pET expression system and purified by chitin affinity column chromatography. Purified ChBD(ChiA1) spe...
متن کاملChitinase system of Bacillus circulans WL-12 and importance of chitinase A1 in chitin degradation.
Bacillus circulans WL-12, isolated as a yeast cell wall-lytic bacterium, secretes a variety of polysaccharide-degrading enzymes into culture medium. When chitinases of the bacterium were induced with chitin, six distinct chitinase molecules were detected in the culture supernatant. These chitinases (A1, A2, B1, B2, C, and D) showed the following distinct sizes and isoelectric points: Mr 74,000,...
متن کاملMutations of Trp275 and Trp397 altered the binding selectivity of Vibrio carchariae chitinase A.
Point mutations of the active-site residues Trp168, Tyr171, Trp275, Trp397, Trp570 and Asp392 were introduced to Vibrio carchariae chitinase A. The modeled 3D structure of the enzyme illustrated that these residues fully occupied the substrate binding cleft and it was found that their mutation greatly reduced the hydrolyzing activity against pNP-[GlcNAc](2) and colloidal chitin. Mutant W397F wa...
متن کاملPutative exposed aromatic and hydroxyl residues on the surface of the N-terminal domains of Chi1 from Aeromonas caviae CB101 are essential for chitin binding and hydrolysis.
Chitinase Chi1 of Aeromonas caviae CB101 possesses chitin binding sites at both its N and C termini. Four putative exposed residues aligned in a line on the surface of the N-terminal domains of Chi1 were found to contribute to the enzyme-chitin binding and hydrolysis via site-directed mutagenesis. Also, it was found that Chi1 requires the cooperation of the N- and C-terminal domains to bind ful...
متن کاملStructural characteristics of an insect group I chitinase, an enzyme indispensable to moulting
Insects possess a greater number of chitinases than any other organisms. This work is the first report of unliganded and oligosaccharide-complexed crystal structures of the insect chitinase OfChtI from Ostrinia furnacalis, which is essential to moulting. The obtained crystal structures were solved at resolutions between 1.7 and 2.2 Å. A structural comparison with other chitinases revealed that ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 376 Pt 1 شماره
صفحات -
تاریخ انتشار 2003